Search results

Search for "petal effect" in Full Text gives 1 result(s) in Beilstein Journal of Nanotechnology.

Hierarchically structured superhydrophobic flowers with low hysteresis of the wild pansy (Viola tricolor) – new design principles for biomimetic materials

  • Anna J. Schulte,
  • Damian M. Droste,
  • Kerstin Koch and
  • Wilhelm Barthlott

Beilstein J. Nanotechnol. 2011, 2, 228–236, doi:10.3762/bjnano.2.27

Graphical Abstract
  • leaves (petals) of many plants are superhydrophobic, but water droplets do not roll-off when the surfaces are tilted. On such surfaces water droplets are in the “Cassie impregnating wetting state”, which is also known as the “petal effect”. By analyzing the petal surfaces of different species, we
  • discovered interesting new wetting characteristics of the surface of the flower of the wild pansy (Viola tricolor). This surface is superhydrophobic with a static contact angle of 169° and very low hysteresis, i.e., the petal effect does not exist and water droplets roll-off as from a lotus (Nelumbo nucifera
  • superhydrophobic, low adhesive surface design, which combines the hierarchical structuring of petals with a wetting behavior similar to that of the lotus leaf. Keywords: anti-adhesive; petal effect; petal structures; polymer replication; superhydrophobic; Introduction Plant surfaces provide a large diversity of
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2011
Other Beilstein-Institut Open Science Activities